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Abstract Addressing challenges in urban water infrastructure systems, including aging infrastructure,

supply uncertainty, extreme events, and security threats, depends highly on water distribution networks

modeling emphasizing the importance of realistic assumptions, modeling complexities, and scalable

solutions. In this study, we propose a derivative-free, linear approximation for solving the network water

flow problem. The proposed approach takes advantage of the special form of the nonlinear head loss

equations, and, after the transformation of variables and constraints, the water flow problem reduces to a

linear optimization problem that can be efficiently solved by modern linear solvers. Ultimately, the

proposed approach amounts to solving a series of linear optimization problems. We demonstrate the

proposed approach through several case studies and show that the approach can model arbitrary network

topologies and various types of valves and pumps, thus providing modeling flexibility. Under mild

conditions, we show that the proposed linear approximation converges. We provide sensitivity analysis and

discuss in detail the current limitations of our approach and suggest solutions to overcome these. All the

codes, tested networks, and results are freely available on Github for research reproducibility.

1. Introduction

Water distribution networks (WDNs) are complex, large-scale critical infrastructure responsible for provid-

ing safe drinking water to the continuously growing population. In the United States, public water utilities

serve approximately 95% of the total population (USEPA, 2017).WDNs are composed of numerous elements

such as pipes, valves, tanks, and pumps that transport water from a few points of water supply to numer-

ous water consumers. Aging infrastructure, supply uncertainty, growing population, extreme events, and

security threats pose mounting challenges on urban water infrastructure (AWWA, 2017; Black & Veatch,

2016). Addressing these challenges depend highly onWDNmodeling and the validity of these models. Fur-

thermore, taking advantage of technological advances and integrating smart sensing and actuation with

physically based models for operations and management of urban water systems heavily relies on theWDN

models. Modeling WDNs involves solving the water flow problem (WFP), which is governed by the linear

flow continuity and nonlinear energy conservation (Todini & Rossman, 2013), and finding the flow through

each pump, valve, and pipe and head at each node given network characteristics, status of pumps and valves,

initial head of tanks and reservoirs, and demand at each node of the WDN. Notably, realistic assumptions,

modeling complexities, and the inherently large scale of WDNs emphasize the importance of scalable water

flow modeling solutions in the context of managing modern WDNs.

The literature of solving the WFP as well as other related problem formulations is rich and briefly

summarized next. The main approaches for solving the WFP are based on Hardy-Cross (Cross, 1936),

Newton-Raphson (Epp & Fowler, 1970; Liu, 1969; Martin & Peters, 1963; Todini & Pilati, 1987; Wood &

Rayes, 1981), linearization (Isaacs & Mills, 1980; Jeppson, 1976; Moosavian, 2017; Price & Ostfeld, 2012;

Wood & Charles, 1972; Wood & Funk, 1993), optimization (Arora, 1976; Collins et al., 1978), gradient-based

(Todini & Pilati, 1987; Todini & Rossman, 2013), graph decomposition (Deuerlein, 2008; Deuerlein et al.,

2009; Diao et al., 2014;Martínez Alzamora et al., 1996), and,more recently, fixed-pointmethods (Bazrafshan

et al., 2018; Zhang et al., 2017). These methods can be classified as primarily relying on iterative updat-

RESEARCH ARTICLE
10.1029/2019WR025694

Key Points:

• A new method for solving the water

flow problem is proposed and tested

• The method considers arbitrary

network topology, flow direction, and

various valve types

• The approach is scalable to

large water networks and can be

seamlessly integrated for network

actuator control and state estimation

routines

Correspondence to:
L. Sela,

linasela@utexas.edu

Citation:
Wang S., Taha, A. F., Sela, L.,

Giacomoni, M. H., & Gatsis, N.

(2020). A new derivative-free linear

approximation for solving the network

water flow problem with convergence

guarantees. Water Resources Research,

56, e2019WR025694. https://doi.org/

10.1029/2019WR025694

Received 1 JUN 2019

Accepted 27 JAN 2020

Accepted article online 20 JAN 2020

©2020. American Geophysical Union.

All Rights Reserved.

WANG ET AL. 1 of 23



Water Resources Research 10.1029/2019WR025694

ing, decomposition methods, or optimization-based formulations, and differ in terms of their modeling

limitations and complexity, handling nonlinearities, and convergence speed, as discussed in the following

paragraphs.

The first classical approach is attributed to Cross (1936) that developed a loop-based method for solving

the WFP suitable for small networks and hand calculations. Martin and Peters (1963) first applied the

Newton-Raphson method by modeling all the equations in terms of nodal heads and obtaining the solution

via successive iterations. Slow convergence and large oscillations during iterations are the two main disad-

vantages of the proposed approach. Later, Liu (1969) proposed a simplified version of the Newton-Raphson

method via decomposition of the Jacobian matrix into diagonal and nondiagonal matrices, which simpli-

fied the solution of the equations. However, the method suffers from convergence issues if the initial guess

is not carefully chosen. A linearization method was proposed by Wood and Charles (1972) in terms of link

flow equations, where the nonlinear energy equations were linearized and updated in each iteration (Wood

& Charles, 1972). Wood and Funk (1993) later extended the link flow model using extended Taylor series.

Jeppson (1976) reformulated the nonlinear energy equations for each loop in terms of flow adjustment fac-

tors and proposed a linearizationmethod using the standard Taylor series expansion, whichwas then solved

iteratively using the Newton-Raphson method. Isaacs and Mills (1980) proposed a linearization method

based on nodal heads providing a simpler model and symmetry of coefficient matrix compared with Wood

and Charles (1972). Notably, the global gradient algorithm (Todini & Pilati, 1988) implemented in the

EPANET software (Rossman, 2000), which utilizes the Newton-Raphson solution approach for solving the

nonlinear system of equations, is the most widely used method for solving the WFP (Burger et al., 2016).

Giustolisi et al. (2011) proposed an enhanced global gradient method to accelerate the convergence process

for large-scale networks while preserving the accuracy of the solution. Moosavian (2017) derived a multi-

linear method to improve the convergence rate of Wood and Charles (1972) and Todini and Pilati (1988),

where the nonlinear energy equations are linearized based on the maximum and minimum allowable flow

rate in pipes and the solution is iteratively updated in the successive iterations. To further accelerate and

improve convergence, several recent works have proposed intricate algorithms to exploit network struc-

ture in the computational procedure including careful selection of network loops (Alvarruiz et al., 2015;

Deuerlein et al., 2015; Vasilic et al., 2018) and selection and decomposition of network trees and forest (Elhay

et al., 2014; Simpson et al., 2012).

An alternative approach for solving the WFP is by formulating the problem as nonlinear but convex

optimization problem, that is, the content problem that is constrained by linear mass balance equations

minimizing network content or the unconstrained dual problem minimizing the cocontent function

(Collins et al., 1978; Dembo et al., 1989). The original formulations were later extended to include

pressure-dependent demands and flow regulating devices (Deuerlein et al., 2009, 2019; Moosavian & Jae-

farzadeh, 2014). The advantages of optimization-based approaches are clear, linear, and convex models can

be efficiently solved to global optimality for very large networks using modern solvers (MOSEK ApS, 2014;

Gurobi Optimization, Inc. 2014). The approach presented in this paper is most closely related to Sela Perel-

man and Amin (2015) that initially proposed a geometric programming (GP) approximation (Duffin et al.,

1967) for solving the WFP by converting the nonconvex head loss equations into a GP form resulting in

a nonlinear but convex optimization problem, and, hence, a globally optimal solution is guaranteed. An

important contribution of the previously proposed GP method is that it is noniterative (i.e., a one-shot opti-

mization problem). However, it is only applicable under the assumptions of a tree network topology, known

and fixed flow directions, andwas limited in themodeling complexities of valves and pumps. These assump-

tions make the previously proposed approach (Sela Perelman & Amin, 2015) not suitable for urban water

networks comprising branched and looped topologies.

In this study, we propose a novel GP approximation-based optimization approach to solve the network flow

problem by taking advantage of the special form of the head loss equations. The main advantages and con-

tributions of the proposed approach compared with previous GP-based modelingSela Perelman and Amin

(2015) are (1) after transformation of variables and constraints the optimization problem that solves the

WFP is linear, (2) any arbitrary topologies and various types of valves and pumps can be seamlessly mod-

eled providingmodeling flexibility, and (3) prior knowledge on flow directions ormaximum flow rates is not

required. Our approach involves two steps: (1) the nonlinear nonconvex WFP is transformed to a nonlinear

but convex problem using GP and (2) the convex GP form is further transformed into linear form resulting in

a set of linear equations. In short, the proposed approach reduces theWFP to a systemof linear equations and
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solves a series of linear programs (LP), thereby graciously scaling to large WDNs. Additionally, we demon-

strate that the proposed approach can be straightforwardly extended tomodel pressure-driven demands and

leaks and integrated in control and optimization problems. We provide convergence proof, explore the sen-

sitivy of the approach and propose acceleration scheme for computational speedup. The paper organization

is given as follows. Section 2 describes themodeling ofWDNs. Section 3 provides some necessarymathemat-

ical background related to GP. Section 4 presents the paper's main contribution and the proposed algorithm

and Appendix B presents the convergence proof. Section 5 demonstrates the application of our approach

to several case studies, and section 6 presents the sensitivity analysis. Section 7 proposes further extensions

including pressure-driven modeling and WFP-constrained optimization. Finally, section 8 concludes the

paper.

The following notations are used in the text—italicized, boldface upper and lower case characters represent

matrices and column vectors: a is a scalar, a is a vector, and A is a matrix. Matrix I denotes the identity

square matrix, whereas 0m×n denotes a zero matrix of with size m-by-n. The notation R denotes the set of

real numbers, and notations Rn and R
m×n denote the sets of column vectors with n elements and matrices

with m-by-n elements in R. For x ∈ R
m, y ∈ R

n, a compact column vector in R
m+n is defined as {x , y} =

[x⊤ y⊤]⊤. The element-wise product is represented as x◦y for x, y ∈ R
m. The variables with upper case

characters ·J, ·R, ·TK, ·P, ·M, and ·W represent the variables related to junctions, reservoirs, tanks, pipes, pumps,

and valves.

2. Modeling ofWDNs

AWDN is represented here by a directed graph  = ( , ). The set  defines the nodes and is partitioned

as  =  ∪  ∪ where  ,  , and  stand for the collection of n" junctions, nt tanks, and nr reservoirs,

respectively. The set  ⊆  ×  defines the links and is the partitioned as  =  ∪  ∪  , where  ,,

and  represent the collection of np pipes, nm pumps, and nw valves, respectively. The directed graph 

can be expressed by its incidence matrix A, which stands for the connection relationship between vertices

and edges. For the ith node, the neighboring nodes are defined by the seti, which is partitioned asi =

 in
i
∪ out

i
, where in

i
and out

i
collect the nodes of the adjacent inflow and outflow links. Notice that the

assignment of direction to each link (and the resulting inflow/outflow node classification) is arbitrary. Thus,

A is composed of 1, −1, and 0 elements indicating positive, negative, or no connection, respectively. A

can be represented using the block column partition [AP⊤

h
AM⊤

h
AW⊤

h
], corresponding to pipe, pump, and valve

edges, and block row partition [AJ⊤

q
AR⊤

q
ATK⊤

q
]⊤, corresponding to junction, reservoir, and tank nodes, as in

(1). Note that the dimension of AJ
P is n" × np, and the size of the other submatrices can be inferred similarly.

The details of A are discussed in section 2.2. Table 1 summarizes the variables notation used in this paper.

2.1. Modeling Components

The basic hydraulic equations describing the flow inWDNs are derived from the principles of conservation

of mass and energy (Todini & Rossman, 2013). For elements such as nodes, conservation of mass means the

sum of inflows and outflows is equal to 0, and for storage tanks to the change in the water storage volume.

The conservation of energy states that the energy difference stored in a component is equal to the energy

increases minus energy losses, such as, frictional and minor losses (Puig et al., 2017). According to these

basic laws, the equations that model mass and energy conservation for all components in WDNs can be

written in explicit and compact matrix-vector forms, as detailed next.
2.1.1. Tanks and Reservoirs

We assume that reservoirs have infinite water supply and the head of the ith reservoir is fixed (Gleixner et al.,

2012; Singh & Kekatos, 2018; Zamzam et al., 2018) and we have

hR
i
= h

Rset
i

, (2)
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Table 1
Variable Notation

Notation Description

hJ
i
, hR

i
, hTK

i
Head at the ith junction, reservoir, or tank

qP
i"
, qM

i"
, qW

i"
Flow through the pipe, pump, or valve from node i to node "

ΔhP
i"
, ΔhM

i"
, ΔhW

i"
Head loss or gain from i to " for the pipe, pump, or valve

si" Speed of the pump through node i to node "

oi" Openness of the valve through node i to node "

$ A vector collecting all variables (head and flow)

$̂ GP form of $

⟨$̂⟩n The nth iteration value of $̂

$EPANET Solution provided by EPANET software.

$GP-LP Solution from our proposed GP-LP-based approach.

where h
Rset
i

is specified.

The head created by a cylindrical tank that has a fixed cross sectional area can be described as

hTK
i

= h
TKset
i

, (3)

where h
TKset
i

=
Vi
ATK
i

+ ETK
i

and the elevation ETK
i
, volume Vi and cross sectional area A

TK
i
of the ith tank can

be measured.

2.1.2. Junctions and Pipes

Junctions are points of connection between links where water flowmerges or splits. The expression of mass

conservation of the ith junction can be written as

∑
"∈ in

i

q"i −
∑

"∈ out
i

qi" = di, (4)

where di stands for end-user demand that is extracted fromnode i, andwe assume that the demand is known

for the WFP. The major head loss of a pipe from node i to " is due to friction and is determined by

ΔhP
i"
= hi − h" = Ri"q

P
i"
|qP
i"
|&−1, (5)

whereRi" is pipe resistance coefficient, which is a function of pipe size, length, andmaterial;& is the constant

flow exponent. Note that Ri" and & vary correspondingly with themost common formulae tomodel the head

loss, which are Hazen-Williams, Darcy-Weisbach, and Chezy-Manning (Linsley & Franzini, 1979; Rossman,

2000). The approach presented in this paper considers any of the three formulae. The minor head losses in

pipes caused by turbulence that occurs at bends and fittings are not considered in this paper but could be

easily modeled using surrogate pipe length.

2.1.3. Pumps

A head increase/gain can be generated by a pump between the suction node i and the delivery node ". The

pump properties dictate the relationship function between the pump flow and head increase (Linsley &

Franzini, 1979). Generally, the head gain can be expressed as

ΔhM
i"
= hi − h" = −s2

i"

(
h0 − r(qM

i"
s−1
i"
)'
)
, (6)

where h0 is the shutoff head, q
M
i"
is the flow, si" ∈ (0, smax

i"
] is the relative speed, which is known, and r and

' are the curve coefficients of the pump that are chosen from a particular range of values. It is worthwhile

to notice that the head gain hM
i"
is always a negative value and the flow through the pump is always strictly

positive. Pump flow and head constraints will be later modeled as operational constraints (10c) and (10b).

2.1.4. Valves

Several types of valves can be utilized to regulate the flows or pressures in WDNs. General Purpose Valves

(GPV), Pressure Reducing Valves (PRV), and Flow Control Valves (FCV) are commonly used valves that
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are controlled through valve openness or set points for pressure reduction or flow regulation. The different

valve flow-head relationships used in our paper are based on (Rossman, 2000, Chapter 3). GPVs can be used

to model turbines, well drawdown, or reduced-flow backflow prevention valves. Here, we assume that the

GPVs are modeled similarly to a pipe with controlled resistance coefficient, which can be expressed as

ΔhW
i"
= hi − h" = o−1

i"
Ri"q

W
i"
|qW
i"
|&−1, (7)

where oi" ∈ (0, 1] is a known parameter depicting the openness of a valve, and the rest of the variables are

similar to the pipe model. When oi" = 1 the valve is fully open and as oi" decreases, the valve closes resulting

in greater losses (Piller & van Zyl, 2014). When a GPV is completely closed, no constraint exists between hi
and h" indicating that the two nodes are decoupled and the corresponding constraint (7) should be removed.

PRVs limit the pressure at a specific location in the network (reverse flow is not allowed) and set the pressure

to Pset on its downstream side when the upstream pressure is higher than Pset(Rossman, 2000, Chapter 3.1);

otherwise, they are treated as open pipes with minor head loss. Assuming that the upstream side is denoted

as i, and the downstream side is " and given the status of a PRV, the PRV can be modeled as

where li" is the lumped minor head loss coefficient depending on the acceleration of gravity, cross-sectional

area, and local losses of the PRV. Parameter hWset is the pressure setting converted to head implying hWset =

E" + Pset, and E" is the elevation at junction ", parameter Pset is the pressure setting of the PRV and both

are constant. Therefore, the head h" is fixed, and the fact that reverse flow is not allowed in PRVs can

be expressed as operational constraint included in (10b). Similarly for GPV, if PRV completely closed, the

constraint between the two adjacent nodes hi and h" is removed.

FCVs limit the flow to a specified setting qWset when the head hi at upstream node i is greater than the head

h" at downstream node ", otherwise, FCVs are treated as open pipes with minor head loss. FCVs can be

modeled as

where li" is the lumped minor head loss coefficient and q
Wset is the setting value.

Note that regardless of the type of link, that is, pipe, pump, or valve, a closed indicates that the corresponding

flow qi" is 0; thus. the corresponding links are removed from the incidence matrix A, and inherently no

constraints are imposed between its adjacent nodes i and ".

2.2. NonlinearWFP Formulation

This section derives an optimization-based formulation given theWDNmodel. Aside from the physical con-

straints listed above, typical design and operation problems pertaining to WDNs also consider engineering

constraints, such as restricting the desired flows and heads in the network. These additional constraints can

be written as

hmin
i

≤ hi ≤ hmax
i

(10a)

qmini" ≤ qi" ≤ qmaxi" (10b)

hM
i"
≤ 0. (10c)

Equations (10a) and (10b) are the lower and upper bounds on the heads of nodes, flows through links;

equation (10c) is the head increase delivered by pumps. Let the compact vectors hJ, hR, and hTK collect the

heads at junctions, reservoirs, and tanks, h ≜ {hJ,hR,hTK} collect all the heads at the nodes, where h ∈ R
nh

and nh = n" + nr + nt is the summation of the number of junction, reservoirs, and tanks, respectively.
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Similarly, the flow through pipes, pumps, and valves are collected by compacted vectors qP, qM, and qW, let

q ≜ {qP,qM,qW}, andq ∈ R
nq , wherenq = np+nm+nw is the summation of the number of pipes, pumps, and

valves, respectively. We define a vector collecting all above optimization variables as $ ≜ {h,q}, and $ ∈ R
n$

where n$ = nh + nq. Thus, all constraints can be summarized as $ ∈ [$min, $max], and equations (2)–(9) can

be presented as

where AJ
q
≜ [AJ

P AJ
MA

J
W] is the mass balance for all nodes (4), A

R
h
and ATK

h
collect (2) and (3) for reservoirs

and tanks, AP
h
and AM

h
collect the head loss equation (5) and the head gain equation (6), and AW

h
and AW

W are

the left-hand side of valve (7)–(9). The right-hand side is a vector collecting the corresponding coefficients

including demand d ∈ R
n" for all junctions, settings of reservoirs hRset ∈ R

nr and tanks hTKset ∈ R
nt ,

nonlinear head loss/gain functions for all linksΔhP(qP),ΔhM(qM), andΔhW(qW) or valve settings hWset and

qWset collected in bW0 .

Remark 1. A0 is a square matrix, and A0 ∈ R
n$×n$ since AJ

q
∈ R

n"×nq ,AR
h
∈ R

nr×nh ,ATK
h

∈ R
nt×nh ,AP

h
∈

R
np×nh ,AM

h
∈ R

nm×nh , and AW
h
∈ R

nw×nh .

Assumption 1. A0 is invertible.

Hence, the overall nonlinear modeling of wfp can be written as

WFP: find $

s.t. (10), (11).
(12)

The WFP (13) is nonlinear and nonconvex due to the head loss models of pipes and pumps.

Motivated by the literature gaps discussed in section 1 (Sela Perelman & Amin, 2015), we propose a new

GP-based optimization approach to solve theWFP, which is convex in the variables, considers various kinds

of valves and pumps, while not requiring the a priori knowledge of water flow direction, and applies to any

network topology. Note that the GP form itself is not convex, however, the log form of GP is convex. Hence,

whenwe sayGP is convex in this paper, wemean that the log form of GP is convex. After theGP is developed,

the problem is transformed to an LP, as discussed in section 4.3.

3. GP andModeling Tricks

A basic introduction to GP is given in this section and a simple LP example is presented to illustrate how

to convert a problem into its GP form.

3.1. GP

A geometric program is a type of optimization problem with objective and constraint functions that are

monomials and posynomials (Boyd et al., 2007). A real valued function g(x) = cx
a1
1 x

a1
2

… x
an
n , where c > 0,

x > 0, and ai ∈ R, is called amonomial of the variables x1, … , xn. A sum of one or more monomials, that

is, a function of the form ( (x) =
∑K

k=1 ckx
a1k
1 x

a2k
2

… x
ank
n , where ck > 0, is called a posynomial with K terms

in the vector variable x. A standard GP can be written as

GP: min
x>0

(0(x)

s.t. (i(x) ≤ 1, i = 1, … ,m

gi(x) = 1, i = 1, … , p,

(13)

where x is an entry-wise positive optimization variable, (i(x) are posynomial functions, and gi(x) are mono-

mials. A standard GP form is nonlinear and nonconvex. The main technique to solving a GP efficiently is
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to convert it to a nonlinear but convex problem using a logarithmic change of variables, and a logarithmic

transformation of the objective and constraint functions. Defining )i = log xi, the log form of GP can be

expressed as

GP-log: min
)

log(0(y)

s.t. log(i(y) ≤ 0, i = 1, … ,m

log gi(y) = 0, i = 1, … , p,

The log form of GP is convex and can be solved efficiently with modern solvers (Boyd et al., 2007, section

2.4). We note that the log function can be with any base b, which is greater than 1. With above analysis, we

can see that our task is to formulate our WFP as a standard GP, and then the rest can be solved directly by

GP solver (Grant & Boyd, 2014; MOSEK ApS, 2014).

3.2. Handling Negative Flows

Since the direction of the flows in the WFP problem is generally unknown, the flow in each pipe can be

viewed as free variable, that is, it is unrestricted in its sign. However, all variables in (13) are required to be

positive, and reverse direction of flows cannot be directlymodeled usingGP. Several techniques are available

to convert the free variables to positive variables, for example, by representing the positive and negative parts

by positive dummy variables as in the simplex method (Lustig et al., 1994) for solving LPs. However, this

modeling trick does not apply in our setting (see (5) and (7)). Here, we propose another trick to convert a

free variable to a positive one, thus allowing modeling reverse direction of flows. Consider an exponential

function ( (x) = bx that can map any x to ( (x) and ( (x) is always positive. Taking advantage of this idea, we

can convert a problem with a negative feasible region into a new problem with a positive feasible region.

After the solution of the transformed problem is obtained, the original solution can be obtained simply by

reverting back. For ease of demonstration, we illustrate this idea using a simple LP problem (14).

First, the original free variables are converted into the correspondingGP variables denoted using x̂, for exam-

ple, the variables x1 and x2 turn into x̂1 and x̂2 via x̂1 = bx1 and x̂2 = bx2 , where the base b > 1. Second,

the constraints and objective functions are converted into the monomial or posynomial form, for example,

the constraint −x1 + x2 ≤ 4 can be expressed as b−4 x̂−11 x̂1
2
≤ 1 via executing exponential on both sides of

−x1 + x2 ≤ 4. Thus, we successfully convert an LP (14) into its GP form (15) and the solution of the original

LP problem can also be obtained using GP solver.

min2x1 + 3x2

s.t. − x1 + x2 ≤ 4
(14)

min x̂21 x̂
3
2

s.t. b−4 x̂−11 x̂12 ≤ 1
(15)

Any LP problem can be converted; however, the conversion of LP seems to make the transformed problem

harder. This is not the casewhen the nominal problem is highly nonlinear and nonconvex. The techniquewe

introducedmayhelp to transformanonconvex, nonlinear problem into a convex one as shown in subsequent

sections.

4. GPModeling and Corresponding LPModeling ofWFP

Based on the new introduced optimization technique, we convert the nonlinearWFP (13) into its GP form,

then derive the corresponding LP model, and propose an algorithm to solve the GP-LP problem.

4.1. Conversion of Variables

Here, theGPvariables $̂ are obtained bymapping the optimization variables $ in (13). Specifically,we convert

the head and demand at the ith node, hi and di, and the flow qi" into positive values ĥi, d̂i, and q̂i" through

exponential functions, as follows

ĥi ≜ bhi , d̂i ≜ bdi , q̂i" ≜ bqi" , (16)
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where b = 1+ * is a constant base and * is a small positive number. The variables ĥi, d̂i, and q̂i" are positive,

which can then be used to transform the nonconvex WFP (13) into a GP.

4.2. Conversion of Mass and Energy Balance Equations

4.2.1. Mass Balance Equations for Junctions

Convertingmass balance at junctions following the above exponentialmapping (16) is straightforward. After

exponentiating both sides of (4), variables collected in $ are changed into $̂, the summation is turned into

multiplication, and we obtain

b

∑
"∈ in

i

q"i−
∑

"∈out
i

qi"

=
∏

"∈ in
i

bq"i
∏

"∈ out
i

b−qi" =
∏

"∈ in
i

q̂"i
∏

"∈ out
i

q̂−1
i"

= bdi = d̂i.

After the transformation, constraint (4) is converted to monomial equality constraint written as

∏
"∈ in

i

q̂"i
∏

"∈ out
i

q̂−1
i"
d̂−1
i

= 1. (17)

4.2.2. Energy Balance Equations for Pipes

Now we convert the head loss model for pipes and let ΔĥP
i"
be the GP form of head loss of a pipe, which is

obtained by exponentiating both sides of (5) as follows

ĥiĥ
−1
"

= ΔĥP
i"
= b

(
qP
i"
Ri" |qPi" |&−1−qPi"+qPi"

)
= b

qP
i"

(
Ri" |qPi" |&−1−1

)
q̂i" = ĉP(qP

i"
) q̂P

i"
,

where ĉP(qP
i"
) = b

qP
i"

(
R|qP

i"
|&−1−1

)
is a function of qP

i"
, which means ĉP(qP

i"
) can be viewed as a known when qP

i"
is

given. At first, we can make an initial guess denoted by ⟨qP
i"
⟩0 for the 0th iteration (⟨ĉP⟩0 can be obtained if

⟨qP
i"
⟩0 is known), thus, for the nth iteration, the corresponding values are denoted by ⟨qPi"⟩n and ⟨ĉP⟩n. If the

flow rates are close to each other between two successive iterations, we can approximate ⟨ĉP⟩n using ⟨ĉP⟩n−1,
that is ⟨ĉP⟩n ≈ ⟨ĉP⟩n−1. Then, for each iteration n,

⟨ĉP⟩n = b
⟨qP
i"
⟩n−1

(
R|⟨qP

i"
⟩n−1|&−1−1

)

can be approximated given the flow value ⟨qP
i"
⟩n−1 from the previous iteration. With this approximation, the

head loss constraint for each pipe can be written as a monomial equality constraint

ĥiĥ
−1
"
[ĉP]−1[q̂P

i"
]−1 = 1. (18)

The idea is to iteratively update the abovemonomial equality constraint, where the highly nonlinear term is

included into a parameter ĉP and computed based on the solution of the previous iteration. The newobtained

solution is used to update ĉP again and generate the constraints in next iteration. This technique is similar

to the iterative update in the gradient and Newton-Raphson approaches (Todini & Pilati, 1987).

4.2.3. Energy Balance Equations for Pumps

Similarly, the new variables q̂M
i"
= b

qM
i" and ŝi" = bsi" for (i, ") ∈  are introduced for pumps. Let ΔĥM

i"
be the

GP form of head increase of a pump:

ĥiĥ
−1
"

= ΔĥM
i"
= b

−s2
i"
(h0−r (qM

i"
)' s−'

i"
)
= b

−s2
i"
h0 (b

qM
i" )

r(qM
i"
)'−1s2−'

i" = ĉM1 (q̂i")
cM
2 , (19)

where ĉM1 = b−si"h0 and cM
2
= r(qM

i"
)'−1s2−'

i"
. Parameters ĉM1 and cM

2
follow a similar iterative process as ĉP. That

is, they are treated at the nth iteration as constants based on the flow and relative speed values at the n−1th

iteration. Hence, the approximating equation for the pump head increase becomes the monomial equality

constraint

ĥiĥ
−1
"
[ĉM1 ]

−1[q̂M
i"
]−c

M
2 = 1. (20)
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4.2.4. Energy Balance Equations for Valves

As for valves, the derivation of GPVs is the same as for pipes except for an extra variable ôi" = b
o−1
i" for

(i, ") ∈  is introduced. LetΔĥW
i"
be the GP form of head loss of a valve, which is obtained by exponentiating

both sides of (7) as follows.

ĥiĥ
−1
"

= ĥW
i"
= b

(
o−1
i"
qW
i"
R|qW

i"
|&−1−qW

i"
+qW

i"

)
= b

o−1
i"

(
RqW

i"
|qW
i"
|&−1−qW

i"

)
q̂i" = ĉW q̂i" ,

where ĉW(qW
i"
) = b

o−1
i"
qW
i"

(
R|qW

i"
|&−1−1

)
is a similar parameter as the parameters in pipe and pumpmodels. Hence,

the monomial equality constraint can be used for GPVs

ĥiĥ
−1
"
[ĉW]−1

[
q̂W
i"

]−1
= 1. (21)

For PRVs andFCVs, the conversion process is similar as the one of pipes orGPVs, and equations (22) and (23)

can be obtained after exponentiating both sides of (8) and (9).

where ĉW(qW
i"
) = b

qW
i"

(
li" |qWi" |−1

)
in (22) and (23).

4.2.5. Physical Constraints

For the physical constraints (10), the conversion process is similar to section 4.2.1 since both are linear

constraints. After exponentiating (10), the GP form becomes

ĥ−1
i
ĥmin
"

≤ 1, ĥi

[
ĥmax
"

]−1
≤ 1 (24a)

q̂−1
i"
q̂min
i"

≤ 1, q̂i"

[
q̂max
i"

]−1
≤ 1 (24b)

ĥMi" ≤ 1. (24c)

4.2.6. GPModeling ofWFP

After the conversion of all variables and constraints, we can express the converted problem as

WFP-GP: find $̂

s.t. (17) − (24).
(25)

Problem (26) is in standard GP form and can be solved directly by modern GP solvers and even though

the WFP-GP (26) is not convex, as we mentioned, the log form of this problem is convex(Boyd et al., 2007,

section 2.5). Starting with an initial guess for the flow rates and relative speeds, the constraints (17)–(24) are

approximated at every iteration based on the previous iterations. This process continues until a termination

criterion is met. The details are further discussed in Algorithm 1. In the next section, we show how the

WFP-GP (26) problem can be formulated using a tractable linear approximation.

4.3. LPModeling Derived FromGPModeling

As we illustrated in the end of section 3, an LP and a GP can be converted to each other; for example,

equation (15) can be obtained from (14) via exponent technique, and the inverse operation also holds true

meaning that equation (14) can be converted back from (15) via the log operator. Inspired by this idea, we

can apply the inverse operation to WFP-GP (26), and generate an LP for the WFP. After applying the log

function on both sides of GP form of the mass balance Equation (17), the result would be the original linear
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form of the mass balance equation (4). It means the linear modeling is converted back from GP modeling.

Similarly, for equations (22)–(24), the corresponding results are (8)–(10).

As for the GP form of energy balance equations for pipes, after applying the log function with base b on both

sides of equation (18), a linear equation can be obtained as

hi − h" − qP
i"
= cP

i"
, (26)

where cP
i"
= logb(ĉ

P
i"
).

Similarly, the linear form of energy equation balance for pumps and valves (GPVs, PRVs, and FCVs) can be

expressed as (27) and (28) when applying the log function on both sides of (20), (21), (22a), and (23a), as

hi − h" − cM2 q
M
i"
= cM1 (27)

hi − h" − qW
i"
= cW

i"
, (28)

where cM1 = logb(ĉ
M
1 ) and cW

i"
= logb(ĉ

W
i"
). Note that (i)ĉW

i"
varies according to the types of valves, (ii)

equation (28) applies to PRVs and FCVs in open status, and for active status, equations (8b) or (9b) is used,

which are linear as well. Thus, the nonlinearities from pipes (5), pumps (6), and valves (GPVs (7), PRVs (8),

and FCVs (9)) are approximated by its linear form (26)–(28).

After updating the model in (11), the linear matrix representation of WDNs can be written as

where cP, cM1 ,C
M
2 , and b

W collect the parameters from linear modeling of pipes, pumps, and valves, and note

that cP ∈ R
np , cM1 and cM

2
∈ R

nm , CM
2 = diag(cM

2
) ∈ R

nm×nm , and bW ∈ R
nw including cW or valve settings

hWset , qWset . Thus, the LP form of WFP can be expressed as

WFP-LP: find $

s.t. (10), (29).
(30)

Remark 2. A in (29) is a square matrix, and A ∈ R
n$×n$ since two zero submatrices in A0 (11) are replaced

with the matrices −Inp×np and C
M
2 with the same size.

Lemma 1. A is invertible. The proof is given in AppendixA.

WFP-LP (30) derived from GP form can be viewed as a linear approximation of nonlinear WFP model-

ing (13), and it can be solved with any LP solvers directly. Note that all constraints of (30) are equality

constraints except the lower and upper bounds in (10), and we can rewrite them in matrix form

A
[
AJ;AR;ATK;AP;AM;AW

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

$ = b
[
bJ;bR;bTK;bP;bM;bW

]
,

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
(31)

where A is a coefficient matrix collecting all submatrices and AJ is from the mass balance equation (4), AR

and ATK collects (2) and (3) for reservoirs and tanks, AP is from the linearized pipe head loss equation (26),

AM is linearized equation (27) for pump, andAW collects all linear equations for valves. The right-hand side

b is a coefficient vector collecting the corresponding coefficients in (29). An example of A and b is given in

section 5.

We note that A is square, invertible matrix (Lemma 1), which implies that an analytical solution can be

obtained efficiently large-scale networks using scalable methods for solving linear systems of equations.
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The bound constraints (10) are not including in this case, since these constraints are included in design

and operation problems to adjust for admissible flows and heads. We will illustrate later in the paper

that this approach yields good performance, in comparison with solving a linear program with inequality

constraints (10).

Next, we provide Algorithm 1 for solving the WFP using WFP-LP (30) or its matrix form (31). Notice that

all variables are collected in $ and the notation ⟨$⟩n in Algorithm 1 stands for the nth iteration value $. The

initial statuses of pumps and valves, head in tanks, and reservoirs as well as nodal demands are assumed to

be known. For the users familiar with the EPANET software (Rossman, 2000), all the necessary information

needed to formulate the WFP-LP (30) can be seamlessly imported from the “.inp” source file.

Algorithm 1 is initialized with any initial guess ⟨$⟩0 and requires defining the threshold or number itera-
tions for convergence as well as acceleration parameter an. In each iteration, parameters ⟨cP⟩n and ⟨cW⟩n are
updated based on previous iterations, ⟨cM

2
⟩n is fixed and does not need to be updated, and matrices A and

b collecting the above parameters are automatically updated as well. Notably, for a fixed topology only sub-

matrices AP
,AM, and parts of AW and the corresponding parts in vector b require updating, while the rest

remain fixed. The iteration error is defined as the Euclidean distance between two consecutive iterations.

The iterations continue until the error is less than a predefined error threshold (threshold) or the maximum

number of iterations (maxIter) is reached, and the final solution is set by $GP-LP = ⟨$⟩n.
Steps 5–8 are used to accelerate the convergence of the algorithm. The acceleration parameter an that can

be adjusted dynamically with iterations, for example, every nstep iterations, and set individually for different

elements, where an◦Δ$ represents element-wise product. Algorithm 1 can also be applied to solve the opti-

mization problem (26) or (30) with corresponding GP/LP solver. When dealing with (26), the steps remain

the same except that the variables are changed into the GP variables $̂. For the same scale problem, the GP

solver is usually slower than an LP solver, and the analytical solution is faster than any solver.

4.4. Convergence of GP-LP Iteration

In Appendix B, we show the convergence of proposed GPmethod under mild conditions that typically hold

in practical WDNs. The theorem and proof are given first, followed by a discussion on how the initial points

and acceleration parameter inAlgorithm1 are relatedwith the convergence. Specifically, we note that a large

an can be set for a pipe with small Ri" , an is related to not only the flow rate but also to the change of flow rate

in the (n− 1)th iteration, and when ⟨ΔqP
i"
⟩n−1 converges to 0, an can theoretically be infinity. In Appendix B,

we give bounds to limit an in each iteration by (B8a) and (B8b) simultaneously. The acceleration parameter

an that is not limited by the given range can cause the iterations to oscillate or diverge and, hence, a large

acceleration parameter can make the iterations less stable. It follows that a proper choice of an is needed

for each element and iteration to reach the best performance of convergence. Although beyond the scope of

this work, the convergence can be optimized by adopting self-adaptation acceleration parameter (Solomon

& Van Hemmen, 1996).
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Figure 1. Three-node network (left), variable-speed pump curve (middle), and the value of log10(error) and c
P during iterations (right).

5. Case Studies

Four WDN examples (three-node, eight-node, Anytown, and C-Town networks) are used to illustrate in

detail the applicability of the GP-LP approximation for solving the WFP, and three additional networks are

used to test the convergence and simulation times. The first testcase, that is, the three-node network, is

developed to illustrate the details of GP-LP model. The second case is a modified eight-node network with a

PRV to illustrate that proposed approach is able to handle looped topologies and valves. TheC-Townnetwork

is used to test the scalability of our approach, and the Anytown network is adopted to discuss the sensitivity

analysis. The numerical tests simulated and compared with the help of the EPANETMatlab Toolkit (Elíades

& Kyriakou, 2009) on a MacBook Pro with an Intel Core i7 at 2.2 GHz. No acceleration parameter is used

except for the sensitivity analysis of the Anytown network, and different threshold andmaximum iterations

are set for each network. All the results reported in the next sections are based on solving the LPmatrix form

of the WFP. All codes, parameters, tested networks, and results are available on github (GP-NET, 2019).

5.1. Illustrative Three-Node Network

In this example, the network is composed of three nodes (one reservoir, one tank, and one junction with

demand) as shown in Figure 1 (left). The corresponding model can be written as (33) in Table 2. The heads

at Reservoir 1 and Tank 3 are h
Rset
1 = 213.4 m, and h

TKset
3

= 276.8 m; the demand at Junction 2 is d2 =

6.3 × 10−3 m3∕s. The curve of variable-speed pump is shown in Figure 1 (middle), the relative speed is

known and fixed at s12 = 1, and the other parameters are h0 = 393.7, r = 3.8288 × 10−6, and ' = 2.59.

Note that curve of the pump in Figure 1 (middle) is the negative value of ΔhM defined in (6). Given the

length LP = 304.8 m, diameter DP = 0.304 ft, and coefficient CHW = 100, the resistance coefficient is

R23 = 1.145 × 10−5. The upper and lower bound constraints are expressed by (33e) to save space.

5.1.1. NonlinearModeling of Three-Node Network

In the problem expressed by equation (33), there are a total of six variables, which can be reduced to

three variables because two of them (h1, and s12) are fixed, and h3 represents the water surface elevation

because the system is assumed to be operated under steady conditions. The variable h2 can be eliminated by

adding (33c) and (33d). Hence, finding the feasible solution of (33) equals to solving the following nonlinear

equations

The problem represented by (32), which can be visualized in Figure 2 where each constraint is represented

by a corresponding plane. The solution lies in the intersection of surfaces defined by (32a)–(32c).

5.1.2. GP-LPModeling of Three-Node Network

The corresponding GP formulation of (33) is listed in (34) in Table 2 after applying the technique we intro-

duced in section 3.1. As we mentioned in section 4.3, the GP can be transformed to an LP via performing

the log function, as shown in (35) in Table 2. Furthermore, (36) is obtained after rewriting (35) in matrix

form. We can see that (35) is a linear approximation, but not the same as the first-order Taylor approxima-

tion. Now this problem can be solved by an LP solver directly. The parameters we use in Algorithm 1 for

the three-node network are selected as threshold = 0.01 and maxIter = 100. Figure 1 (right) shows how

the error decreases and cP is updated in each iteration until convergence, which occurs in n = 15 iterations.
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Table 2
Three-Node Network Formulation

Find $ Original form Find $̂ GP form

s.t. q12 − q23 = d2 (33a) s.t. q̂12 q̂
−1
23

d̂−1
2

= 1 (34a)

h1 = h
Rset
1 , h3 = h

TKset
3

(33b) ĥ−11 ĥ
Rset
1 = 1, ĥ−1

3
ĥ
TKset
3

= 1 (34b)

h2 − h3 = R23 q23 |q23|&−1 (33c) ĥ2 ĥ
−1
3

[ĉP]−1 q̂−1
23

= 1 (34c)

h1 − h2 = −(h0 − r(q12)
' ) (33d) ĥ1 ĥ

−1
2
[ĉM1 ]−1 (q̂12)

−cM
2 = 1 (34d)

$ ∈ [$min, $max] (33e) $̂ ∈ [$̂min, $̂max], (34e)

Find $ LP form Find $ LP matrix form

s.t. q12 − q23 = d2 (35a) ⎡
⎢⎢⎢⎣

0 0 0 1 −1
0 1 0 0 0
0 0 1 0 0
1 0 −1 −1 0
1 1 0 0 −cM

2

⎤
⎥⎥⎥⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
A

⎡
⎢⎢⎢⎣

h2
h1
h3
q23
q12

⎤
⎥⎥⎥⎦

⏟⏟⏟
$

=

⎡⎢⎢⎢⎢⎢⎣

d2
h
Rset
1

h
TKset
3
cP

cM1

⎤⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏟⏞⏞⏟

b

h1 = h
Rset
1 , h3 = h

TKset
3

(35b)

h2 − h3 = cP + q23 (35c) (36)

h1 − h2 = cM1 + cM
2

q12 (35d)

$ ∈ [$min, $max], (35e)

In order to show that our method converges from random initial points, we generate 40 random values for

q12 and q23, and all of them converge to the same final value. We plot the trajectory of Algorithm 1 from

random initial guesses to the final solution, represented by the colorful lines in Figure 2, where the marker

represents the value of the initial guess, in terms of flow and head, and the color of the line represents the

two-norm distance of current value, where red and blue represent initial guesses farther and closer to the

final solution, respectively. We can see that regardless of the initial value, the solution converges to the final

value (blue and small marker). Similar random initializations were performed in the rest of the networks

presented in this work demonstrating convergence to the correct solution regardless of the initial guess. We

compare our solution to EPANET simulations and the obtained results are listed in Table 3. The absolute

error between $GP-LP and $EPANET is defined as AE = |$GP-LP − $EPANET|, the corresponding relative error is
RE =

AE

|$EPANET| × 100%, and the Euclidean norm EN = ||$GP-LP − $EPANET||. The results show that the our

approach performs well for this simple tree topology-based network.

5.2. Modified Eight-Node Network

The eight-node network is adopted fromRossman, (2000, Chapter 2) and includes a PRV to test our approach

with control valves. The modified version includes three more junctions (Nodes 9–11) and a PRV between

Junctions 3 and 9. Labels for various components and the topology of modified eight-node network are

shown in Figure 3a. A PRV has two different states corresponding to its working condition. When the PRV

is working in “ACTIVE” condition, the pressure setting is Pset = 45 m. The elevation at downstream side is

E9 = 190 m. The constraint determined by this PRV from (8) is hW
9
= 235 m. The parameters for Algorithm

1 are set as: threshold = 0.01 andmaxIter = 100. We test both the “ACTIVE” scenario when pressure setting

is 45 m or 100 m and the “OPEN” scenario. The error in the three tested scenarios compared to EPANET

Figure 2. Visualization of the iteration process for 40 random initial points (x markers).
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Table 3
Solution of Three-Node Network GP-LP Versus EPANET

Variables $GP-LP $EPANET RE EN

h2 (m) 277.6330 277.6316 0.0005%

q12 (m3/s) 5.8186 × 10−2 5.8186 × 10−2 0% 1.4021 × 10−3

q23 (m3/s) 5.1877 × 10−2 5.1877 × 10−2 0%

simulation results is EN = 0.0067. The problem for this test case has a 23 × 23 A matrix standing for 23

LP variables and 23 LP constraints when rewritten in the LP matrix form. The difference in number of

constraints stems fromnot considering the upper and lower bound constraintswhen the network ismodeled

in the LP matrix form.

5.3. C-TownNetwork

In order to test the scalability of our proposed GP-LP approach, we test the C-Town network (Ostfeld et al.,

2012) that contains 364 junctions, 1 reservoir, 7 tanks, 405 pipes, 11 pumps (three of them are in “closed”

status), and 4 valves (one of them is closed) shown in Figure 3c. The size ofA is 783×783, and the parameters

for Algorithm 1 are set as: threshold = 0.01 and maxIter = 1000.

Figure 4 (left) shows the log(EN)with iterations, and Figure 4 (right) shows the histogram of absolute errors

of individual network components. Note that the convergence criteria is defined as the Euclidean norm

between $GP-LP and $EPANET, which summarizes the values of all the components and not individual compo-

nents. At the final iteration, EN = 1.6969, which pertains to a 783 × 1 vector; thus, the error per variable is

small. The histogram in Figure 4 (right) shows that 99% of absolute errors are within [0, 0.5].

The computational time of solving the LP in matrix form is approximately 5 swith a highly sparse 783×783

matrix A in C-Town, where 99.66% of the elements are zeros. The computational time could be further

reduced by applying efficient methods for solving A−1. Note that this is preliminary work for modeling

WDNs, and the majority of computational time involves reading input files, preparing the parameters, and

saving temporary results. The code will be optimized in the future work.

5.4. Computational Time Statistics for Tested Cases

We tested the proposed algorithm using additional WDNs that vary in their size and complexity, including

PES, NPCL, and OBCL (Eliades et al., 2016). Summary of the mainWDNs properties and simulation results

Figure 3. (a) Modified eight-node network, (b) Anytown, and (c) C-Town network.
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Figure 4. The log10 of EN (left) and histogram of AE (right) in C-Town.

are listed in Table 4. The computational results reported in Table 4 are averaged after testing three times for

each network with random initial guesses.

6. Sensitivity Analysis

To study the sensitivity of our approach and demonstrate howaccelerated convergence ofAlgorithm1 can be

achieved,we utilize theAnytownnetwork (Walski et al., 1987). TheAnytownnetwork contains 19 junctions,

3 reservoirs, and 40 pipes, as shown in Figure 3b. The corresponding LP modeling has a 63 × 63 matrix A.

Algorithm 1 parameters for Anytown network are set as threshold = 0.01 and maxIter = 5, 000. Compared

with similar scale networks, the convergence time for Anytown network is relatively slow, requiring 4,995

iterations to reach the threshold. Figure 6 shows the change in the error log10(EN) with the number of

iterations (blue). After analyzing the source data of the Anytown network, we notice that the main errors

are caused by the flows through Pipes 78 and 80, connecting the two reservoirs (labeled as blue line segment

in Figure 3b). Here, we only show the analysis for Pipe 78 since both pipes have the same parameters.

The first three columns in Table 5 show the results after 200 iterations, including the heads at Reservoir

65 and Junction 60, that is, h65 and h60, respectively, the head loss, Δh
P
78
, and flow, q78, in Pipe 78 connect-

ing Junction 60 with Reservoir 65. Notice that relative error of h60 between our final GP-LP solution and

EPANET solution is only 0.0092%, however, the relative error of q78 up to 55.3611%. Intuitively, the reason

for the error stems from the pipe resistance coefficient, R, which is significantly low compared to the rest

of the network (R78 = 8.1712 × 10−7). The resistance values of all 40 pipes are plotted in Figure 5. From the

bar plot, we can see that the resistance coefficients for the other pipes in the network are 100 to 1,000 times

greater than for these two pipes. Next, recall the head loss equation (5), rearranging in terms of the flow we

get

qP78 =

(
ΔhP

78

R78

)0.54

,

where resistance coefficient R78 is defined by Hazen-Williams. Hence, small difference inΔhP
78
would result

in large difference in q78 due to the small R. For this reason, flows q78 and q80 deviate significantly from the

EPANET solution. According to the conservation of mass (4), any variables related to q78 and q80 will be

affected.

In order to verify our conclusion that the GP-LP method is sensitive in the resistance coefficients R, we

increase R78 = 9.5873 × 10−5 by increasing the length, reducing the diameter and the CHW coefficient of

the pipe, and compare with updated EPANET simulation results. The corresponding results are shown in

the middle three columns of Table 5, and the relative error of q78 after 200 iterations is only 0.7278%, where

Table 4
Tested Networks and the Corresponding Computational Time Using Algorithm 1

Network Eight node Anytown C-Town PES NPCL OBCL

# of {9,1,1, {19,3,0, {364,1,7, {68,3,0, {337,0,2, {262,1,0,

componentsa 10,1,1} 40,1,0} 405,11,4} 99,0,0} 399,0,0} 288,1,0}

# of variables 23 63 783 170 738 552

# iterations 57 256 729 55 595 87

Time (sec) 0.0050 0.0553 5.6281 0.0346 4.3761 0.6730

a# of components: {# Junctions, # Reservoirs, # Tanks, # Pipes, # Pumps, # Valvesg}
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Table 5
Sensitivity Analysis for the Anytown Network

Base case without an Sensitive analysis Base case with an

$GP-LP $EPANET RE $GP-LP $EPANET RE $GP-LP $EPANET RE

h65 215 215 0% 215 215 0% 215 215 0%

h60 215.1435 215.0342 0.0092% 214.4865 214.4824 0.0019% 215.0362 215.0342 0.0019%

ΔhP
78

0.1435 0.0342 — 0.5135 0.5176 — 0.0362 0.0342 —

q78 139.8081 313.1986 55.3611% −102.8188 −103.5727 0.7278% 307.1522 313.1986 1.93%

updated parameters are referred as case of sensitivity analysis while the previous parameters are marked as

base case.

To address the sensitivity problem causing the slow convergence, we utilize the acceleration parameter an
in Algorithm 1. We test two scenarios: (i) all acceleration parameters are set to 20 and (ii) adjusting the

acceleration parameters in each iteration according to (B8). Figure 6 shows the log10(EN) with the number

of iterations without an acceleration parameter (blue), with the same acceleration parameter for all pipes

(red), and adjusting the acceleration parameter for Pipes 78 and 80 (yellow). Comparing with the base case

without an which takes 4995 iterations to converge, using same acceleration parameters converges withing

654 iterations, andwith different acceleration parameters convergeswithin 256 iterations. The latter solution

is presented in the last three columns in Table 5 and themaximum relative error caused by q78 is only 1.93%,

which improved significantly compared with the base case.

7. Using GP-NET and Future Extensions

7.1. Using the ProposedWFP Solver: GP-NET

All the codes, tested networks, and results are available on GP-NET (2019). From our formulations, the code

of solving WFP can be divided into three categories. The first category is using WFP-GP (26) formulation

and can be solved by general GP solvers (Grant & Boyd, 2014; MOSEK ApS, 2014). The second category is

formulated based on WFP-LP (30) and can be solved is using LP solvers. The third is the matrix form of

LP (31), which needs no solvers, and the analytical solution can be obtained for each iteration. Technically,

WFP-GP and WFP-LP are more general, and could be adapted to any other problems such as control and

state estimation problems (Wang et al., 2019) inWDNs by simplymodifying the objective function or adding

constraints, while the analytical solution provided by matrix form of LP is faster and can only be applied to

solving the WFP. We note that not all nonlinear functions can be converted into GP form so far, and both

WFP-GP and WFP-LP are meaningful since some objective functions are easier to formulate as GP or vice

versa. Since all formulations are based on or derived from GP, we name the solver GP-NET. In order to use

GP-NET properly, the reader is referred to the Readme.md file on github (GP-NET, 2019).

7.2. Pressure-DrivenModeling

Pressure-driven demand can be seamlessly integrated into the GPmodeling approach. The pressure-driven

demand function can be formulated as (Giustolisi et al., 2008; Giustolisi & Laucelli, 2011)

Figure 5. The resistance coefficient R for all 40 pipes in Anytown network (Pipes 76, 78, and 80 are magnified for
comparison purposes).
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Figure 6. log10(EN) with the number of iterations (4995, 654, and 256) by adjusting acceleration parameter an.

where dact
i
is the actual supplied demand, d

dsgn

i
is the desired demand, hser

i
and hmin

i
are the service and the

minimum heads, respectively, and / is typically equal to 0.5 (Wagner et al., 1988).

Given the pressure-driven demand model, the mass balance equation (4) can be rewritten as

∑
"∈ in

i

q"i −
∑

"∈ out
i

qi" = dact
i
. (38)

The pressure-driven demand is a function of hi in three different regions. The shape of the demand function

for hi ≥ hser
i
and hi ≤ hmin

i
is similar to the original demand-driven formulation (4). For hmin

i
< hi < hser

i
, the

demand in (37b) has the similar form of the head loss model hi−h" = Ri"
|||qPi"

|||
&

in (5). In fact, it is easier than

the head loss model (5) because (37b) does not have the absolute sign; hence, the same trick we introduced

to deal with the head loss model is also applicable. The GP form of (38) can be expressed as

∏
"∈ in

i

q̂−1
"i

∏
"∈ out

i

q̂−1
i"
ĥ−1
i

[
ĉJ
]−1

= 1,

where ĉJ = bhi−d
act
i is a parameter similar as ĉP in the GP form of head loss. The corresponding LP form is

written as

∑
"∈ in

i

q"i −
∑

"∈ out
i

qi" − hi = cJ.

Note that cJ is updated similarly as the updating process in (22) and (23), by checking the value of hi in the

previous iteration and selecting the appropriate function dact
i
to update the newvalue of cJ. Nodal leakage can

be modeled similarly to (37), having two cases for negative and positive nodal pressure head, and by super-

imposing leakage from contributing pipes proportionally to the pressure at the incident nodes (Giustolisi

et al., 2008).

7.3. Optimal Control

TheWFP can be integrated in optimization problems for different applications. For example, consider opti-

mal tank and pump control in WDNs, in which the objective of the operator is to minimize the deviation of

the water levels in tanks hTK(k) from a target value hTKset or enforce smooth operation by minimizing the

variability of pumpoperationsΔqM(k). These can be added as objective functions to formaWFP-constrained

optimization problem formulated in WFP-GP (26) or in WFP-LP (30). Specifically,

Γ1(k) =
(
hTK(k) − hTKset

)⊤ (
hTK(k) − hTKset

)
(39a)

Γ2(k) = ΔqM(k)⊤ΔqM(k), (39b)
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where Γ1(·) promotes maintaining the targeted water storage set by the operator; h
TK collects the head in

tanks, and hTKset is a vector collecting the target head levels of tanks; Γ2(·) promotes the smoothness of

control actions throughΔqM(k) = qM(k)−qM(k−1) byminimizing the variability in the flow rate changes of

controllable components from time k− 1 to k. We can convert the above objective functions using proposed

GP tricks: (1) Conversion ofΓ1:The objectiveΓ1 promotesh
TK to be close tohTKset . Hence, we introduce a new

auxiliary variable ẑ(k) ≜ bh
TKset−hTK(k) which will be close to 1 when tank water levels are close to the target

levels. Using the epigraph form, the original objective function Γ1 is replaced with Γ̂1(ẑ(k)) =
∏nt

i=1
ẑi(k) and

the following constraints are added ẑi(k) = ĥ
TKset
i

[ĥTK
i
(k)]−1 and ẑi(k) ≥ 1, where ĥ

TKset
i

= bh
TKset
i and ĥTK(k) =

bh
TK(k). (2) Conversion ofΓ2: Using the epigraph form, the original objective function Γ2 can be expressed as

a new objective Γ̂2(p̂(k)) =
∏nm

i=1
p̂i(k)

ΔqM
i
(k) with additional constraints given as p̂i(k) = q̂M

i
(k)[q̂M

i
(k − 1)]−1

and Γ̂2(p̂(k)) ≥ 0 where parameter 0 stands for the extent of smoothness of the objective function and to

prevent Γ̂2(p̂(k)) from reducing to 0.

8. Conclusions

In this paper, a new derivative-free, linear approximation method is proposed for solving the WFP. The pro-

posed approach transforms the variables and constraints in WFP, which, ultimately, reduces to an LP that

can be solved analytically or by linear solvers. Case studies demonstrate the performance in terms of accu-

racy and convergence rates. The proposed approach considers looped and branchednetwork topologies, flow

directions, and various valve types, it is scalable to large water networks. Under mild conditions, we show

that the proposed linear approximation converges and provide guidelines to achieve convergence speedups.

Additionally, we demonstrate future extensions to include pressure-driven demand and leak modeling as

well as integrating theWFP in network control and state estimation problems. The modeling approach pro-

posed in this work can be transferred to other infrastructure systems, such as natural gas infrastructure, in

which the governing equations can be modeled similarly to water networks, where gas flow and pressures

correspond to water flow and heads, compressor and regulator stations correspond to pumps and control

valves that increase and regulate pressures, respectively (Babonneau et al., 2012; Misra et al., 2015; Pfetsch

et al., 2015). Future work will explore possible extensions to other infrastructure systems as well as further

improving the computational performance of the proposed approach.

Appendix A: Proof A is Invertible

Proof According to Assumption 1, we know that A0 is invertible, that is, a row of all zeros does not exist
after Gaussian elimination. Hence, the row submatrices in A0 are linearly independent with each other,
which means AR

h
, ATK

h
, AP

h
, and AM

h
are linearly independent with each other. According to Remark 2, row

submatricesAJ,AR
,ATK, andAW inA are also linearly independent with each other. Thus, in order to prove

A is invertible, we only need to proveAP andAM are linearly independent with the other row submatrices in
A. We will prove that AP (corresponding to the pipes) is linearly independent of the rest of the submatrices.

First, we can see that AP ∈ R
np×np itself is linearly independent because it contains a Inp×np . Second, A

P is

linearly independent ofAR,ATK,AM, andAW because identity matrix Inp×np cannot be eliminated with zero

rows using Gaussian elimination. Third, it is clear thatAP is linearly independent withAJ because each row
in AP collecting (26) includes linear combination of heads and flows, while each row in AJ collecting (4)
includes linear combination of flows. Similarly, we can prove that AM is linearly independent of the rest of
submatrices. Hence, A is invertible.

Appendix B: Convergence of GP-LP Iteration

In this section, we show the convergence of proposed GP method under mild conditions that typically hold

in practical WDNs. The theorem and proof are given first, followed by a discussion on how the initial points

and acceleration parameter in Algorithm 1 are related with the convergence. Although Algorithm 1 allows

checking and updating the status of pumps and valves in each iteration, this section focuses on the typical

WFP setting where the statuses are known and, therefore, do not need to be updated in each iteration. In

addition, the proof is furnished first for the case where all statuses are open. In this case, GPVs, PRVs, and

FCVs have similar modeling of pipes and can be treated directly as pipes with different head loss. This way,

we have a WDNwith only pumps and pipes, and valves are included in nm. In what follows, we analyze the

iteration ⟨$⟩n = A−1b of Algorithm 1.
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We set aside the effect of acceleration parameter at first; that is, we set an = 0. Additionally, we combine

the equations related with reservoirs and tanks; for example, AR and ATK are compressed into one row with

hR_TK = {hR,hTK}, hset = {hRset ,hTKset}, and n( = nt + nr . Then the matrix in (29) takes the form

Note that A is separated into four blocks, and A changes if and only if CM
2 = diag(cM

2
) is updated, where

cM
2

= r(qM)'−1 [cf. (19)] when speed is fixed as 1. Similarly, cM1 is fixed once the pump curve is set, and b

changes if only and if cP = logb(ĉ
P
) = qP◦

(
R|qP|&−1 − 1

)
(4.2.2) is updated. In short, A only reflects the

update of pump flows qM, and b only reflects the updates of pipe flows qP.

It follows from $ = A−1b [cf. (29] that the nth iteration is ⟨$⟩n = A−1
n−1bn−1, and the n + 1th iteration is

⟨$⟩n+1 = A−1
n
bn. Now consider two consecutive iterations n − 1 and n, and note that the only changes in A

and b are through the updates ⟨CM
2 ⟩n = ⟨CM

2 ⟩n−1 + ⟨ΔCM
2 ⟩n−1 and ⟨cP⟩n = ⟨cP⟩n−1 + ⟨ΔcP⟩n−1. We have An =

An−1 +ΔAn−1 and bn = bn−1 +Δbn−1 where ΔAn−1 = diag(0, ⟨ΔCM
2 ⟩n−1) and Δbn = [0 0 ⟨ΔcP⟩n−1 0]⊤.

Since we have nm pumps, we denote the ith element in ΔCM
2 (or the parameter for the ith pump) as ΔcM

2_i

and introduce two diagonal matrices U and V defined as follows:

U =

[
0(nh+np)×(nh+np) 0

0 Inm×nm

]
, V =

[
0(nh+np)×(nh+np) 0

0 ΔCM
2

]
. (B2)

With the above notation, we have that An = An−1 +UV , where ΔAn−1 = UV is an nm-rank matrix update.

Therefore, we have the iterative formula between two consecutive iterations ⟨$⟩n+1 = A−1
n
(bn−1 + Δbn−1) =

A−1
n
An−1⟨$⟩n + A−1

n
Δbn−1, which is written as

⟨$⟩n+1 = Tn⟨$⟩n + en, (B3)

where Tn = A−1
n
An−1 and en = A−1

n
Δbn−1.

Introducing an appropriate partition for Ainv = A−1, the vector en = A−1
n Δbn−1 is written as

where Ainv22 = A−1
22 + A−1

22A21[A11 − A11A
−1
22A21]

−1A12A
−1
22 according to the block matrix inversion theory

(Bernstein, 2009). In addition, let AHP,M
inv

denote the entire (nh + np) × nm block matrix that sits above A
M
inv22.

Attention is now turned to Tn. According to the Sherman-Morrison-Woodbury formula (Woodbury, 1950),

we have that

A−1
n = (An−1 +UV )−1 = A−1

n−1 − A−1
n−1U(I + VA−1

n−1U)−1VA−1
n−1.

Introducing the partitions of Ainv from (B4), Tn is written as
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Remark 3. The entries of ΔCM
2 and ΔcP can be approximated by

1CM
2

1qM
ΔqM and 1cP

1qP
ΔqP.

An assumption that facilitates the convergence analysis of (B3) is introduced next. This assumption is

expected to be satisfied for typical values of flows in practical WDNs, and was verified numerically for the

WDNs of the numerical tests (section 5).

Assumption 2. Upon defining the matrix Af ≜ diag
(
&R◦|qP|&−1 − 1

)
, it holds that ||Ainv22Af || < 1, where

||.|| denotes the spectral norm of a matrix.

The main convergence theorem is stated as follows.

Theorem 1. Under Assumption 2, the GP-LP iteration, or equivalently, the iteration in (B3), converges.

ProofThe convergence of vector qP is shown first. With Remark 3, for the ith pump, ΔcM
2_i

from ΔCM
2 is

obtained from the slope of cM
2_i
times the changes in qM

i
, that is, ΔcM

2_i
= r(qM

i
)'−2ΔqM

i
= cM

2_i

ΔqM
i

qM
i

. The typical

value of cM
2_i
is small due to the fact that parameter r of the pump curve is very small and also renders ΔcM

2_i

even smaller than cM
2_i
. The typical value of ΔcM

2_i
is thus small enough (10−5 m) in practice, which makes

the diagonal elements in ΔCM
2 very small. It follows that the block of Tn that depends on ΔCM

2 [cf. (B5)]

becomes negligible.

Combining the latter with (B5) and (B4) , the iteration for the components of qP in (B3) takes the following

form:

⟨qP⟩n+1 = ⟨qP⟩n + ⟨Ainv22⟩n⟨ΔcP⟩n−1. (B6)

With Remark 3, we have that ⟨ΔcP⟩n−1 = diag
(
&R◦|⟨qP⟩n−1|&−1 − 1

) ⟨ΔqP⟩n−1. Let ⟨Af⟩n ≜ diag(
&R◦|⟨qP⟩n−1|&−1 − 1

)
, and therefore, (B6) becomes

⟨ΔqP⟩n = ⟨Ainv22⟩n⟨Af⟩n⟨ΔqP⟩n−1 ≜ TP
n⟨ΔqP⟩n−1, (B7)

where TP
n
= ⟨Ainv22⟩n⟨Af⟩n. Note that each diagonal entry of Af is in [−1, 0), indeed, in order for the entries

of Af to be outside of the interval [−1, 0), it would be required that |qPi" | ≥
(

1

&Ri"

)1∕(&−1)
. For the typical

values of & = 1.852 and Ri" = 1 × 10−5 (unitless) using Hazen-Williams model, the latter condition implies

|qP
i"
| ≥ 24 CMS, which clearly cannot hold in practicalWDNs. Invoking Assumption 2, it follows from (B7)

that ⟨ΔqP⟩n → 0, which implies that ⟨qP⟩n converges.
Attention is now turned to the flows through pumps. From the conservation of mass (4), we know that qM

can always be expressed as the linear combination of qP and demand d, which is fixed. Hence, qM converges

when qP converges. Next we prove the convergence of the h components of $.

From (B1) or original (11), we can obtain hR_TK = hset and

[
AJ⊤

P

AJ⊤

M

]
hJ =

[
ΔhP(qP)

ΔhM(qM)

]
−

[
AR_TK⊤

P

AR_TK⊤

M

]
hR_TK,

whereΔhP(qP) andΔhP(qM) convergewhenqP andqM converge.Moreover,hR_TK = hset is a constant vector.

Hence, we note that the right-hand side is a convergent vector. The size of [AJ
P AJ

M]
⊤ is (np+nm)×n" and it

is clear that the number of pipes and pumps is greater than or equal to the number of junctions in a looped

network. That is, the matrix [AJ
P AJ

M]
⊤ has more rows than columns or is a square matrix, and hJ which

can be expressed by the convergent vector on the right-hand side also converges.

The condition ||TP|| = ||⟨Ainv22⟩n⟨Af⟩n|| < 1 was valid for all networks we tested and for all n. We observe

that two factors impact the convergence of GP iteration, the first one is ⟨Ainv22⟩n that is mainly decided
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by the network topology, and the second one is the initialization of the flows that is reflected in matrix

⟨Af⟩n = diag
(
&R|⟨qP⟩n−1|&−1 − 1

)
. When we initialize the flows as zeros, we have that ⟨Af⟩n = I, which is

the worst case. Otherwise, each entry of ⟨Af⟩n is in (−1, 0), which helps making ||TP|| < 1.

Next, we consider the impact of acceleration parameter an in Algorithm 1. If we increase the previous

⟨ΔqP⟩n−1 by an, then we have ⟨Af⟩n = diag
(
&R◦|⟨qP⟩n−1 + an◦⟨ΔqP⟩n−1|&−1 − 1

)
. In other words, the an

would impact on ||TP|| indirectly via ⟨Af⟩n. In order to ensure each entry of ⟨Af⟩n is in (−1, 0) and the

updated flow is in [qmin
i"

, qmax
i"

], then corresponding an for pipe i" is decided by

−(
1

&Ri"
)

1
&−1 − ⟨qP

i"
⟩n−1

⟨ΔqP
i"
⟩n−1

< an <
(

1

&Ri"
)

1
&−1 − ⟨qP

i"
⟩n−1

⟨ΔqP
i"
⟩n−1

, (B8a)

qmin
i"

− ⟨qP
i"
⟩n−1

⟨ΔqP
i"
⟩n−1

< an <
qmax
i"

− ⟨qP
i"
⟩n−1

⟨ΔqP
i"
⟩n−1

. (B8b)

From the above an, we note that (i) a pipewith smallRi" could be set with large an. (ii)an is not only related to

the flow rate but also to the change of flow rate in the (n−1)th iteration, andwhen ⟨ΔqP
i"
⟩n−1 converges to zero,

an can theoretically be infinity. (iii)an should be limited by (B8a) and (B8b) simultaneously. The acceleration

parameter an that is not limited by the above range can cause the iterations to oscillate or diverge, and hence,

a large acceleration parameter canmake the iterations less stable. It follows that a proper choice of an needs

be chosen for each element and iteration to reach the best performance of convergence. In practice, we find

that the iteration starts to oscillate when an is set to a large value, which makes the overall convergence rate

to be slower rather than faster. We propose adjusting an in each iteration according to (B8), while ensuring

that ||TP|| < 1, and reduce an if the GP iteration start to oscillate. The above guidelines have been verified by

Anytown network in section 6. Although beyond the scope of this work, the convergence can be optimized

by adopting self-adaptation acceleration parameter (Solomon & Van Hemmen, 1996).

When PRVs or FCVs are in “ACTIVE” statuses, the proof is exactly the same, because the models of active

PRVs and FCVs have similar mathematical form as the models of tanks or reservoirs and junctions. For

example, when a PRV is active, and the head is set to hRset . That is, AW
h
h = hRset and bW = hRset in (29). In

fact, this model is exactly the same as the model of tanks or reservoirs, which is ATK
h
h = hTKset . Similarly,

when a FCV is active, and the flow is set to qRset . That is, AW
Wq = qRset which is similar to mass balance

equation AJ
q
q = d in (29). It means we can embed the models of active PRVs or FCVs into (B1) directly, and

the proof still holds.
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